
www.manaraa.com

ORIGINAL ARTICLE

Fuzzy association rule-based set-point adaptive optimization
and control for the flotation process

Mingxi Ai1 • Yongfang Xie1 • Shiwen Xie1 • Jin Zhang1 • Weihua Gui1

Received: 19 May 2019 / Accepted: 17 February 2020 / Published online: 5 March 2020
� Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
Froth flotation is a complicated process which is difficult to establish its first-principle model. Due to the fluctuations in the

grade of raw ore, adaptively adjusting the set-points is extremely important in the flotation process. The inappropriate set-

points easily lead to the instability of the process. This paper presents a fuzzy association rule-based set-point adaptive

optimization and control strategy for the antimony flotation process without knowing the system model. Firstly, a fuzzy

neural network is constructed as a soft-sensor to estimate the feed grade online because of the lack of efficient measurement

equipment. Then, fuzzy association rule is used to mine the hidden relationship between the feed grade with reagent

dosages and the optimal set-points. Through data mining from the quantitative database, the fuzzy inference system

generates the optimal set-points. To implement satisfactory tracking performance, predictive controller is used to compute

the control inputs. Because the system dynamics is unknown, long short-term memory network model is established to

predict the future behaviors of the process. Finally, simulations and experiments are carried out to demonstrate the

effectiveness of the proposed strategy. Compared to the manual manipulation, which is widely used in flotation processes,

our control strategy achieves a better control performance, and the concentrate grades are more in line with the process

requirement.
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1 Introduction

A general industrial process control scheme usually

involves an optimization module which generates the set-

points of the operational indices that maximize the eco-

nomic performance function, and a controller which tracks

the set-points [1–3]. A case in point is the froth flotation

which is an important mineral concentration technique.

The flotation is a complicated process with nonlinear

dynamic behavior and uncertainty. The grade of the raw

ore and prices of the reagents vary with the market, such

that the set-points for the lower-level controller should be

adjusted corresponding to the feed conditions. The set-

points of the operational indices are related to the optimal

operation of the flotation process. Studies [1–3] pointed out

that predictive models of the operational indices are

important to calculate the optimal set-points. For the

flotation processes, however, it is difficult to build its first-

principle model, resulting in the challenges in the opti-

mization of the set-points. It is widely accepted that the

appearance features are good indicators that characterize

the operational performance of the flotation processes

[4–8]. Hence, in most flotation plants, the process is con-

trolled by manually observing the appearance of the froth

surface. For example, the froth appearance features include

bubble size, bubble shape, color, and texture. The study in

[6] illustrated the froth features can be viewed as numerical

estimates of froth status or health, and then, a new way for

modeling of flotation processes was presented based on the

froth appearances. In [7], a union distribution of the bubble

size and bubble shape was proposed to describe the froth

image features. Then, a data-driven model was built to

predict the future froth appearances. To reveal the mapping

between the working conditions and the froth appearance,

neural networks were used to model the batch flotation
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process with the froth image features as the input variables

[8].

From the previous studies, we know that appropriate

froth image features imply the good control performance of

the flotation process. However, how to determine the

appropriate values of the features is a challenge for the

flotation processes. For a simple system, the set-point is

easy to be determined, or a fixed set-point is enough. In the

optimization of industrial processes, many studies concern

on the set-point optimization method. In [9], an adaptive

steady-state target optimization was designed to calculate

online optimal set-points for model predictive control

(MPC). It maximizes economic profits to obtain the opti-

mal set-point. In the operation of the wastewater treatment

plant, the real-time optimization (RTO) was presented in

the upper layer to obtain the optimal target [10]. In this

study, both static RTO and dynamic RTO were used in

response to the steady-state and dynamic processes. For the

control of the networked flotation processes, optimization

layer was constructed to provide the set-point for the robust

MPC [11]. In [12], off-policy Q-learning method was

proposed to find the optimal set-points using measured data

for the rougher flotation operational processes. In [11, 12],

they tried to find the set-points of the system outputs, such

as concentrate grade and tail concentrate. So far, few

studies concern on calculating the optimal froth image

feature to guide the manipulation of the flotation process.

Though this question has been realized for a long time,

most of the computer-vision-based researches use the

expert experience to set optimal image features. Recently,

Xie et al. [13] tried to link the set-points with feed grade

using clustering method. In this method, the feed grade was

classified to different clusters offline, and the optimal

surface bubble behavior for each cluster was set manually

in advance. In the historical data of the flotation processes,

abundant association knowledge between the feed grade

with previous control inputs and the optimal froth image

features is hidden. Association rule mining is an effective

technique to dig out the association rule [14–18]. The goal

of association rule mining is to discover important asso-

ciations among items such that the presence of some items

in a transaction will imply the presence of some other

items. In [19], two fuzzy association rule (FAR) mining

models were investigated for enhancing prediction perfor-

mance. The FARs is utilized to provide the knowledge base

for the prediction evaluation of fuzzy inference system. In

misuse detection application, fuzzy grids-based association

rules mining was presented for feature selection [20]. In

[21], a fuzzy logic controller was designed based on FARs

for the mineral processing. The FARs was used to find

some uncovered relationships. In the zinc froth flotation

process, FAR was introduced to association rule between

the working conditions and the optimal froth surface

behavior features [22]. To our best knowledge, few studies

investigate the optimization of set-point using the FAR.

Therefore, studying how to mine the association rule

between the feed conditions and the optimal froth image

feature is still a tough problem in the control of the flota-

tion process.

Subsequent to the optimization, control method design

is the third challenge for the flotation process. In the con-

trol community, many control techniques have been pro-

posed, such as PID [23], fuzzy PID [24], predictive control

[25], fuzzy control [26], optimal control [27], and robust

control [28]. Wu et al. [29, 30] proposed a novel optimal

sliding mode control method for complex hybrid systems,

which has strong robustness to the external uncertainties,

thus can be utilized to the flotation process considered in

this work; also, with such an optimal sliding mode control,

the transient performance of the controlled system has been

greatly improved. Predictive control is one of the widely

used control techniques in industrial processes [31]. Hence,

we use the predictive control technique to deduce the

optimal reagent dosages to implement the set-point track-

ing. In this paper, we propose a fuzzy association rule-

based set-point adaptive optimization and control strategy

for the antimony flotation process. The novelties of our

paper lie on: (1) An FNN-based soft-sensor with dynami-

cally adjusting the number of the fuzzy sets is developed to

estimate the feed grade online; (2) FARs are constructed to

generate the optimal set-points of the image features; (3) a

long short-term memory network (LSTM) model is estab-

lished to approximate the antimony flotation process, and

then predictive controller is used to calculate the control

inputs to track the set-points. Our proposed strategy is

validated by the simulations and experiments in the real-

world plant.

The remainder of this paper is organized as follows:

Sect. 2 describes the process and the framework of the

proposed strategy. The detailed implementation of the

strategy is presented in Sect. 3. Simulations and experi-

ments are shown in Sect. 4. Section 5 draws the

conclusions.

2 Overall description of the proposed
strategy

2.1 Process description

The flow diagram of an antimony flotation plant in China is

shown in Fig. 1. Raw ore is firstly crushed and grinded into

a fine powder by large rotating mills, and the latter is mixed

with water and special reagents to form slurry. After the

gold flotation process, the tailings from gold rougher bank

are pumped to the antimony flotation procedure. The
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antimony flotation is divided into several banks, including

rougher bank, cleaner bank, and scavenger bank. The

rougher bank is the first and most important step, because

over 60% minerals are recovered in this bank. To make the

antimony mineral particles separate from the useless

materials, five kinds of reagents are injected to the rougher

circuit. Foaming agent, including #2 oil, is used to stabilize

foams; copper sulfate and lead nitrate are the activators

which promote the reaction between the reagents and

valuable minerals; collectors are used to change the min-

eral surface hydrophobicity, which include black powder

and xanthate. With the action of the reagents, bubbles in

the rougher circuit carry the mineral particles to the upper

layer of the slurry, forming a froth layer. Then, the froths

are delivered to cleaner banks to further extract and con-

centrate the valuable mineral. The slurry of the cleaner

banks will be recycled to the rougher circuit. The lower

layer of the slurry flows to the scavenger banks which are

auxiliary to recover the mineral. Finally, we obtain the

antimony concentrate from the cleaner banks.

Through observing the froth image, operators manipu-

late the reagent dosages to make the antimony concentrate

grade in the desired range. In our case, it should be

controlled around 32%, preferably in [31%, 33.5%]. The

manual manipulation largely depends on operators’ fre-

quent observation and expert experience. The experience

and motivational levels of operators vary substantially so

that it easily causes excessive consumption of the reagents

and process fluctuations, which affect final product quality

and economic profit. To overcome the drawbacks of

manual operation, we proposed the following strategy to

implement the automatic control of the antimony flotation

process.

2.2 Overall structure of the optimization
and control strategy

A fuzzy association rule-based set-point optimization and

LSTM-based predictive control strategy for the flotation

process are proposed in this paper. The schematic of the

proposed strategy is depicted in Fig. 2, and the variables in

the figure are explained as follows:

x1, x2, x3, x4 Froth image features, bubble size,

bubble shape, froth color, and froth

velocity. x ¼ x1; x2; x3; x4½ �T

Rougher bank

Reagents
Camera

Scavenger bank I

Cleaner bank I Antimony
concentrate

Scavenger bank II

Cleaner bank IIAgitated
tank

Slurry

Tailing/Feed

Froth

Fig. 1 Flow diagram of the antimony flotation process
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Fig. 2 Schematic of FAR-based set-point optimization and control strategy
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r Feed grade

xsp Optimal set-point of the froth image

feature, xsp ¼ xsp1 ; x
sp
2 ; x

sp
3 ; x

sp
4

� �T

u1, u2, u3, u4, u5 Reagent dosages,

u ¼ u1; u2; u3; u4; u5½ �T

The strategy contains three submodules: an FNN-based

soft-sensor, an FAR-based set-point generator, and an

LSTM-based predictive controller. The descriptions of

each module are presented as follows.

1. FNN-based soft-sensor The fluctuation of the feed

grade is the major disturbance in the flotation process.

The feed grade varies with the source of the raw ore

and market, which is unpredictable. It influences the

froth image features. Hence, the optimal set-points of

the image features should be adjusted corresponding to

the variation of the feed grade. However, the feed

grade is usually measured by laboratory analysis. It is

time-consuming, and worst of all, we cannot obtain this

value in real time so as to adjust the set-points. Hence,

FNN-based soft-sensor approach is used to estimate the

feed grade online, because FNN has a good approx-

imation ability and generalization performance

[32, 33]. The inputs of the FNN are the current froth

image features and reagent dosages. Bubble size,

bubble shape, color, and velocity are chosen to

characterize the froth appearance.

2. FAR-based set-point generator The fluctuation of the

feed grade that results in the fixed set-points does not

satisfy the control requirements. Inappropriate set-

points make the controller difficult to implement a

good tracking performance. It is of importance to find

the relationship among the feed grade, reagent dosages,

and optimal set-points of image features. In the

flotation plant, a lot of production data, including the

feed grade, reagent dosages, froth image, and concen-

trate grade, are generated every day, which provide us

a basis to extract the implicit relationship. FARs can

extract the hidden association patterns and the corre-

lation between the items in the large database. There-

fore, we employ FARs to generate the optimal set-

points.

3. LSTM-based predictive controller A predictive model

is crucial to the predictive controller. The mechanism

process of the flotation is complicated so as to difficult

to build its first-principle model. We use LSTM to

model the antimony process, whose performance is

established by our previous study [34]. Then, the

predictive controller is constructed to calculate the

control inputs to accomplish the set-points tracking.

It is noteworthy that the data used in FNN-based soft-

sensor and FAR-based set-point generator are steady-state

data. This is for the reason that reagents usually take about

5–10 min to change the hydrophobicity of minerals’ sur-

face. When the grade of feed slurry or other disturbance

causes the fluctuation of flotation status, the flotation

working condition is continuously changing. Thus, input

images for the FNN-based soft-sensor and FAR-based set-

point generator should be captured in a new stable status

after fluctuation.

3 Realization of the proposed strategy

3.1 FNN-based soft-sensor

An online estimation of the feed grade is necessary to

calculate the optimal set-points of the froth image features.

Our previous research reported that the feed grade is a

nonlinear function of the image features and reagent

dosages [35]:

r ¼ f1 zð Þ ð1Þ

where r denotes the feed grade. z ¼ x1; x2; x3; x4; u½ �T is the

input vector. f1(�) is an unknown nonlinear function, which

is approximated by FNN. The network consists of five

layers. Layer-1 is the input layer which transmits the inputs

to the linguistic variables in the next layer.

Layer-2 is the fuzzification layer. Each node in this layer

links several fuzzy sets. The output specifies the degree to

which an input value belongs to a fuzzy set. Since Gauss

membership function is the basis for the connection

between fuzzy systems and radial basis function neural

networks (RBFNN). Gauss membership function is utilized

as the membership function:

l j
i zið Þ ¼ exp � zi � c j

i

� �2.
r j
i

� �2h i
ð2Þ

where exp(�) denotes the exponential function. c j
i and r j

i

are the mean and standard deviation of the Gauss function

in the jth node of the ith input variable, respectively.

Layer-3 is the rule antecedent layer, in which product

fuzzy AND logic is used to calculate the firing strength:

wm ¼
Y9

i¼1

l j
i zið Þ ð3Þ

where wm is the mth output of the rule layer. The number of

m is determined by the input number and fuzzy set number.

Layer-4 is the rule consequent layer. The output of this

layer is the linear combination of the layer-3 and the

connected weight xm.

Layer-5 is the defuzzification layer. The center of

gravity defuzzification method [36] is used to obtain the

final output.
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r ¼
XM

m¼1

xmwm

,
XM

m¼1

wm ð4Þ

The performance of the FNN relies on the well-defined

set of parameters [37], including the centers and widths of

the Gaussian functions, the number of the fuzzy sets, and

the weights. A training algorithm with dynamically

adjusting the number of the fuzzy sets is proposed to obtain

the parameters. The implementation of the training proce-

dures is presented as follows:

Step 1 Initialize parameters of the FNN.

Step 1-1 Using every kinds of image feature classify-

ing flotation status into K typical classes. Correspond-

ingly, there are K fuzzy sets for every kind of image

feature. Mean and standard deviation of each class are

calculated and used to initialize parameters of mem-

bership functions.

Step 1-2 The number of fuzzy sets and corresponding

membership function parameters for reagents are set

according to those frequently adopted reagent dosages

in manual control.

Step 1-3 Initialize xm using the normal distribution

(mean = 0, std = 1).

Step 2 For the training data z lð Þ; ŷ lð Þf g, in which ŷ lð Þ is
the measured feed grade of the lth sample, calculate the

estimation of the FNN. The predictive error e(l) is

ŷ lð Þ � r lð Þ.
If ŷ lð Þ � r lð Þj j � e1 (e1 is an error threshold), go to step

4, otherwise go to next step.

Step 3 For all the input variables zi lð Þ, verify it belongs to
the effective range of the current Gaussian functions or

not.

If
zi lð Þ�c jið Þ2

r j
ið Þ2 � n2j , then add a new fuzzy set for the ith

input. The center of the new Gaussian function is zi lð Þ,
and the new width and weight are selected randomly.

Else use gradient descent algorithm to tune the

parameters hnew ¼ h� g oE lð Þ
oh

, where h ¼ c j
i ; r

j
i ;xm

� �T
.

E(l) is the cost function, E lð Þ ¼ 1
2
ŷ lð Þ � r lð Þð Þ2. g

denotes the learning rate.

Step 4 l = l ? 1, go to step 2 until the maximum number

of the training data.

Step 5 Use cross-validation method to test the perfor-

mance of the FNN.

It is noteworthy that the gradient descent is a generic

method for continuous optimization and is very commonly

applied to nonconvex functions. With a smooth function

E(l) and a reasonably learning rate g, it will generate a

sequence of points with strictly decreasing values of the

cost function. Gradient descent will eventually converge to

a stationary point of the function, regardless of convexity.

If the function is nonconvex, a local minimizer is found.

3.2 FAR-based set-point generator

In the antimony flotation plant, numerous production data

are produced every day, which imply the relationship

among the feed grade, reagent dosages, and optimal set-

points of image features. We use FAR to mine the inter-

esting and potentially useful regularities. The FAR can be

presented in the form of IF X Then Y, indicating that if the

items in X exist in a transaction, then the items in Y are also

in this transaction with a high probability. To generate the

set-points, the FAR is described as:

Rn: IF x1 isA1n and x2 isA2n and x3 isA3n and x4 isA4n and x5 isA5n

and r isA6n

THEN xsp1 isB1n and x
sp
2 isB2n and x

sp
3 isB3n and x

sp
4 isB4n

where Ain i ¼ 1; . . .; 6ð Þ and Bjn j ¼ 1; . . .; 4ð Þ are the fuzzy

sets for the antecedent and consequent linguistic terms,

respectively. The number of the rules is determined by the

number of the fuzzy sets, and the latter is determined by the

expert experience. Different expert, however, has different

experiences, resulting in the uncertainties in the FAR. In

this study, therefore, Gaussian membership functions with

a fixed standard deviation and an uncertain mean are

introduced for each linguistic term, shown in Fig. 3. The

number of membership functions and their parameters for

each input are determined empirically. Generally, the FAR

mining process can be divided into two phases. First, the

transaction data are scanned to calculate the frequency of

each linguistic term. If the frequency of an item in the

transactions is larger than a predefined threshold value

(called minimum support, denoted by minsup), we consider

that it is a large item. In the second phase, the strong

association rules are generated from the large itemsets. The

detailed procedures are summarized as follows:

Step 1 For the given transaction data D(l)

( z
lð Þ
i ; 1� l�M

n o
), transform the quantitative input z

lð Þ
i

m1 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12

1

m2

M
em

be
rs

hi
p 

de
gr

ee

Fig. 3 Fuzzy membership functions

Neural Computing and Applications (2020) 32:14019–14029 14023

123



www.manaraa.com

into fuzzy sets using the Gaussian membership functions,

described as:

f
lð Þ

i1

Ri1
þ f

lð Þ
i2

Ri2
þ � � � þ f

lð Þ
iN

RiN

( )

ð5Þ

where Rin n ¼ 1; . . .;Nð Þ is the nth fuzzy region of the ith
input data. f

lð Þ
in is the fuzzy membership degree in the

region Rin for the lth sample.

Step 2 Calculate the support value for each fuzzy region

using the following equation:

Supportin ¼
XM

l¼1

f
lð Þ

in ð6Þ

Step 3 For each Rin, if Supportin �minsup, put it in the

set of large itemsets L1. That is

L1 ¼ RinjSupportin �minsup; 1� i� 10; 1� n�Nf g
ð7Þ

Step 4 Let r represent the number of items in the current

large itemsets, and its initial value is 1. Combine the

large itemsets Lr to generate new candidate set Cr?1. It is

worth noting that two fuzzy regions belonging to the

same attribute cannot be added to the same candidate set

simultaneously.

Step 5 For the newly formed set Cr?1, we assume that

there r ? 1 linguistic terms, denoted as a1; a2; . . .; arþ1.

Calculate the fuzzy value of each terms using minimum

operator:

la ¼ la1 ^ la2 ^ � � � ^ larþ1
ð8Þ

Step 6 Calculate the support value of the candidate set. If

the support is equal or greater than minsup, then move

this itemset to Lr?1.

Step 7 Let r = r ? 1, and repeat steps 5–7 until there are

no available combinations to be found.

Step 8 Collect the frequent itemsets together. For each

large itemset Lr?1, generate all the possible association

rules as the form of IF–Then.

Step 9 Calculate the confidence value (CV) of each

association rule:

CV ¼
P

IFð Þ \ Thenð Þ½ �
P

min IFð Þð Þ ð9Þ

Step 10 Only keep the association rules that their CVs

are equal or greater than the predefined threshold value.

After determining the association rules, we use fuzzy

inference system to generate the set-points of the froth

image features. We assume that P association rules have

been obtained. The strength for the pth rule is computed

by:

/ pð Þ ¼ min lAp1
z1ð Þ; lAp2

z2ð Þ; . . .; lAp6
z6ð Þ

n o
ð10Þ

where lApi
zið Þ denotes the truth value of the input zi in the

pth rule. Let b j
p j ¼ 1; . . .; 4ð Þ denotes the resulting fuzzy

control value for the jth output of the pth rule. Then, the

crisp output of the FAR is

x
sp
j ¼

PP
p¼1 / pð Þb j

p
PP

p¼1 / pð Þ
: ð11Þ

3.3 LSTM-based predictive controller

In this section, we aim to implement the tracking control of

the set-points of the froth image feature. The predictive

controller is constructed to accomplish this task, described

as

J kð Þ ¼
XTp

h¼1

xsp k þ hð Þ � x̂ k þ hð Þ½ �2 þ k
XTu

h¼0

Du2 k þ hð Þ

s:t: x̂ k þ 1ð Þ ¼ f2 x kð Þ;u kð Þð Þ
xmin � x̂ kð Þ� xmax

umin � u kð Þ� umax

Dumin �Du kð Þ�Dumax

ð12Þ

where x̂ kð Þ denotes the predicted froth image feature vector

at discrete sampling instant k, which is restricted in

xmin; xmax½ �. f2(�) is an unknown nonlinear mapping func-

tion. k is a weight. Tp and Tu are the prediction horizon and

control prediction horizon, respectively. umin and umax are

the lower and upper bounds of u(k).

Du kð Þ ¼ u kð Þ � u k � 1ð Þ, which should be limited in

Dumin;Dumax½ �.
For the predictive controller, an effective system model

is critical to its control performance. It is widely accepted

that the flotation processes are difficult to establish the first-

principle model [38, 39]. Therefore, we use LSTM to

identify the nonlinear function f2(�) because of its good

performance on sequential data [34]. The LSTM can be

formulated as:

cþ ¼ rs Wfvþ Ufhþ bfð Þ � c
þ rt Wivþ Uihþ bið Þ � rs Wcvþ Uchþ bcð Þ

hþ ¼ rt Whvþ Uhhþ bhð Þ � rs cþð Þ
xþ ¼ Wo � hþ þ bo

ð13Þ

where v ¼ xT uT½ �, c is internal memory cell state, and h is

hidden state. x? indicates the value of x at the next time

step, i.e., x k þ 1ð Þ. rs xð Þ ¼ 1
1þe�x and rt xð Þ ¼ tanh xð Þ. � is

the elementwise product. The terms Wf, Wi, Wc, Wh, Wo,
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Uf, Ui, Uc, Uh are weighting matrices, and bf, bi, bc, bh, bo
are biasing vectors. The weights and bias are offline

learned using the historical data.

4 Experiments and results

To evaluate the performance of our proposed control

strategy, industrial experiments were carried out at an

antimony flotation plant in China. In the antimony flotation

plant, our research team has developed a machine vision-

based monitor platform using an industrial RGB camera.

The software systems, programmed by Microsoft Visual C

?? and MATLAB, analyze the images and extract froth

image features. Four kinds of image features, containing

bubble size, bubble shape, froth velocity, and froth color,

are used in this study.

1. To obtain the bubble size feature, the froth images are

segmented by a marker watershed method. To identify

high-light spot (marker) on the top of bubbles,

H-minimal transform is used to explore the basins

with depth greater than a predefined threshold h for

each individual bubble. After setting markers as local

minimal regions in the complement image, watershed

transform is performed to obtain the segmentation

result [40]. An example is shown in Fig. 4a.

2. After watershed image segmentation, individual bub-

bles are labeled as different connected components.

The diameter of the maximal inscribed circle and

circumcircle of each individual bubble are calculated.

The bubble shape is characterized as the following

average aspect ratio:

R ¼ 1

n

Xn

i¼1

ai
bi

ð14Þ

where a is the diameter of the maximal inscribed circle

and b is the diameter of the circumcircle [41].

3. To extract froth color, the RGB froth image is firstly

transformed to HSV color space. Then, the average

value of H-channel is calculated and used as the froth

color feature.

4. Froth velocity is used to capture the dynamic behavior

of the froth and can be quantified by tracking the froth

movement in two consecutive frames by registering

key points in a fixed size image block. Firstly, a block

consisting of Nrow columns in the left of the first frame

is selected (denoted as Breference). Then, a series of

continuous Nrow columns-sized blocks in the next

frame are extracted. In these blocks, the ith block

(Bi
detect) represents a block starts at column i. ORB

(Oriented FAST and Rotated BRIEF) is introduced to

do key points registration between Breference and Bi
detect.

The image block that has the highest matching score is

used as the matching block, and its column index is

known as instantaneous speed [22]. An image block

matching using key point registration is shown in

Fig. 4b. Ten consecutive video frames are registered,

and their average instantaneous speed is used as the

froth velocity feature. According to the test time for

feature extraction, about 11 s (specifically, 0.867 s for

bubble size and shape, 10.041 s for one set of froth

velocity, 0.0161 s for froth color) were enough in our

computer (Core i7-7800X, 32G RAM).

Then, we conducted simulations to verify the effec-

tiveness of the FNN-based soft-sensor, which is a foun-

dation of the proposed control strategy. Also, experiments

were carried out to demonstrate the control performance.

4.1 Validation of the feed grade soft-sensor

From the camera sampling system, we selected 316 froth

images to extract the features. The data were used to train

the FNN. Another 60 groups of data were chosen to vali-

date the feed grade soft-sensor. The initial parameters of

the FNN are chosen randomly, and the initial fuzzy sets are

determined empirically.

Figure 5 graphs the prediction results of the feed grade

soft-sensor. It shows that most of the errors between the

Fig. 4 Image feature extraction. a Segmentation results; b froth block

matching by key points registration
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predictions of the FNN and the measure feed grades are in

the range of [- 0.1, 0.1]. Our proposed FNN-based soft-

sensor achieved a good prediction accuracy. To demon-

strate the validity and advantages of the proposed feed

grade soft-sensor, it is compared with radial basis function

neural network (RBFNN) [42] and partial least square

(PLS) [43]-based models. The comparison results are pre-

sented in Fig. 5. From Fig. 5b, one can conclude that the

FNN-based soft-sensor performs best among these three

methods. The detailed statistical results from Fig. 5 are

summarized in Table 1. Two performance indices are used

to evaluate the prediction results, including relative root-

mean-square error (RRMSE) and maximum relative error

(MRE). The RRMSEs of the FNN and RBFNN are not

much different and, however, are better than that of the

PLS. The MRE of the FNN-based soft-sensor decreased by

0.3% and 11.96%, respectively, compared with the

RBFNN and PLS. Table 1 verifies the effectiveness of the

FNN-based soft-sensor.

4.2 Experiments

The antimony flotation plant in our case is manipulated by

operators. Through observing the froth in the rougher bank,

the operators adjust the reagent dosages. The concentrate

grade is offline assayed every 2 h, which is a time-delay

feedback information. The operators will correct their

adjustment behavior according to the feedback information.

Every day the plant produces much operational data, in

which some are good operations, while some are not. From

the numerous operational data, we screen out 1000 groups

of data that the concentrate grade is in the desired range. In

total, 950 groups of data are used to generate FARs, and the

rest are used to validate the results. Then, experiments are

conducted to evaluate the proposed optimization and con-

trol approach. To demonstrate the validity and advantages

of the proposed strategy, our approach is compared with

the manual manipulation, least square support vector

machine [41], and random forest [44]-based predictive

control methods. The feed grade during experiments is

presented in Fig. 6. It can be observed that the fluctuation

ranges of the feed grade during the manual control and

automatic predictive control method are similar, so that a

relative fair comparison can be made. The comparison of

the control results is described in Figs. 7 and 8. One can

conclude that the oscillation range of the concentrate grade

using our control approach is narrower than other control

(a)

(b)

Fig. 5 Prediction comparisons of three different soft-sensors. a Pre-

dictive results. b Predictive errors

)
%(

e dar
G

d ee F

Samples

Manual control
LSSVR predictive control
RandomForest predictive control
LSTM predictive control

Fig. 6 The feed grade during experiments

Table 1 Performance comparisons of three different methods

Methods RRMSE (%) MRE (%)

FNN 2.94 8.73

RBFNN 3.03 9.03

PLS 6.55 20.69
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methods. In further, the proposed strategy controlled more

concentrate grade in the desired range, which indicates a

better control performance is achieved. More comparisons

are summarized in Table 2. The performance indices using

in Table 2 include the standard deviation of the concentrate

grade (SD) and the oscillation range (OR).

From Table 2, the SD of the concentrate grade with the

proposed strategy is improved by 0.81, 0.21, and 0.21,

compared with the manual manipulation and other two

automatic control methods, respectively. The OR of the

concentrate grade is reduced from [29.06%, 34.77%] to

[31.24%, 33.98%] compared with the manual manipula-

tion. The results verify the effectiveness of our proposed

control strategy. From Figs. 6, 7, and 8, it can be observed

that to control the antimony concentrate grade in [31%,

33.5%], reagent dosages should compensate the fluctuation

of feed grade promptly. When the feed grade is decreased,

the dosage of xanthate should be increased reasonably in

time. On the contrary, when the feed grade is increased, the

dosage of xanthate should be decreased in time.

5 Conclusions

In this paper, we propose a FAR-based set-point adaptive

optimization and control strategy for the antimony flotation

process. The strategy does not require the knowledge of the

system dynamics. It consists of three modules: (1) an FNN-

based soft-senor to estimate the feed grade online; (2) a FAR-

based set-point generator to obtain the optimal set-points of

the image features; (3) an LSTM-based predictive controller

to track the set-points. Simulations are first carried out to

verify the predictive performance of the FNN-based soft-

sensor. Then, experiments are conducted to show the perfor-

mance of the proposed strategy. Compared with manual

manipulation, our strategy achieved a better performance, and

more concentrate grade is maintained in the desired range.
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